Exercise 33

Find $f^{\prime}(a)$.

$$
f(t)=\frac{2 t+1}{t+3}
$$

Solution

Determine the derivative of $f(t)$.

$$
\begin{aligned}
f^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2(t+h)+1}{(t+h)+3}-\frac{2 t+1}{t+3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2 t+2 h+1}{t+h+3}-\frac{2 t+1}{t+3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{(2 t+2 h+1)(t+3)}{(t+h+3)(t+3)}-\frac{(2 t+1)(t+h+3)}{(t+3)(t+h+3)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{(2 t+2 h+1)(t+3)-(2 t+1)(t+h+3)}{(t+h+3)(t+3)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(2 t+2 h+1)(t+3)-(2 t+1)(t+h+3)}{h(t+h+3)(t+3)} \\
& =\lim _{h \rightarrow 0} \frac{\left(2 t^{2}+6 t+2 h t+6 h+t+3\right)-\left(2 t^{2}+2 t h+6 t+t+h+3\right)}{h(t+h+3)(t+3)} \\
& =\lim _{h \rightarrow 0} \frac{5 h}{h(t+h+3)(t+3)} \\
& =\lim _{h \rightarrow 0} \frac{5}{(t+h+3)(t+3)} \\
& =\frac{5}{(t+3)(t+3)} \\
& =\frac{5}{(t+3)^{2}}
\end{aligned}
$$

Plug in $t=a$ to this formula to get $f^{\prime}(a)$.

$$
f^{\prime}(a)=\frac{5}{(a+3)^{2}}
$$

